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Abstract

The problem of the response of a single spherical vapor bubble is considered for the case of an abrupt increase of pressure in the
surrounding infinite liquid. The mathematical model adopted is based on the assumption of the uniformity of pressure, temperature
and density throughout the bubble volume. The temperature field around the bubble is calculated using the energy equation for the
liquid. Thermal–physical characteristics, exclusive of specific heats of the liquid and vapor, are considered to be temperature-dependent.
A notable feature of the model is the exact fulfillment of the integral law of conservation of system energy, disregarding the relatively
small vapor kinetic energy. The initial bubble radius and the pressure rise in the liquid were varied in the calculations. It was found that
the temperature increment in the bubble due to vapor condensation and heat exchange with the liquid is approximately two orders of
magnitude less than that due to adiabatic compression. To study the effect of condensation, calculations were performed in which phase
transitions were artificially blocked at the bubble boundary. It was found that the character of the process in the latter case changes both
quantitatively and qualitatively; in particular, the temperature increment increases by about an order of magnitude.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The prime object of the work is determination of a tem-
perature increment in a vapor bubble and surrounding
liquid by compression of the bubble due to the external
pressure. As opposed to researches directed towards the
study on bubbles dynamics, a correct consideration of heat
exchange inside and outside the bubble and mass exchange
at the interface is of fundamental importance for the prob-
lem of determination of temperature in the vapor or gas
bubble. In the case of the vapor bubble, heat exchange in
the liquid is most important among the above processes,
as it affects temperature in the bubble not only directly,
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governing a heat inflow and outflow from the bubble, but
also indirectly, controlling variation in vapor mass in the
bubble because of phase transitions.

The consideration of heat exchange in the surrounding
liquid makes the problem essentially intricate, since this
generates a need for solving the energy equation for the
liquid, that, as distinct from the rest of equations, is a par-
tial differential equation. Papers where serious attention
has been given to heat exchange in the liquid may be divis-
ible into two groups. Among the first group are papers
[1–5] in which approximate analytical approaches to solv-
ing the energy equation were used. An approximate
method proposed in [6] was used most often. The method
is based on an assumption that a thickness of a non-uni-
formly warmed-up layer of the liquid around the bubble
is far less than the bubble size. It is apparent that such
an approach is better suitable for problems of bubble
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Nomenclature

A work done by external pressure forces
B parameter in Eq. (30)
c liquid specific heat capacity
cV heat capacity of the vapor at constant volume
cp specific heat capacity at constant pressure
K kinetic energy of the liquid
E internal energy
Er surface energy
Ew parameter in Eq. (30)
i specific enthalpy
j mass of vapor condensing per unit time on unit

area of the interface
F parameter in Eq. (27)
q heat flux
p pressure
r radial coordinate
R radius of the bubble
RV gas constant
S area of the bubble surface
t current time
T temperature
u velocity
U liquid velocity at the bubble boundary
x coordinate

V volume of the bubble
w vapor velocity at the bubble

Greek symbols

a parameter in Eqs. (53–56)
b parameter in Eq. (29)
c ratio of specific heats
e specific internal energies
k thermal conductivity coefficient
l dynamic coefficient of viscosity
h temperature increment
q density
r coefficient of surface tension
s friction stress
U dissipative function
w heat of phase transition

Subscripts
s steam–water interface
v vapor
0 initial value
L liquid
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expansion than for those of bubble compression. The sec-
ond group consists of papers in which the energy equation
for the liquid around the bubble was solved numerically [7].
This approach is universal, but some difficulties of the com-
putational character resulting from the specificity of the
problem in hand may here arise.

The mathematical model used in the work may be con-
sidered being a modification of the uniform-bubble model
[7]. The modification resides in taking account of the tem-
perature dependence of thermal–physical properties and in
a more comprehensive allowance for phase transitions. A
distinguishing feature of the model proposed is the exact
fulfillment of the integral law of conservation of total
energy involving internal energy of the liquid and vapor,
kinetic energy of the liquid and surface energy.

1. Setting of a problem and mathematical model

We shall deal with the process of the vapor bubble com-
pression in infinite liquid at a sudden rise of pressure up to
the constant value of p1 at an infinite distance from the
bubble. At the initial time, the liquid and vapor in the bub-
ble were in equilibrium with each other and had the tem-
perature T0. We accept the following main physical
assumptions. The liquid is incompressible, viscous (Newto-
nian) and heat-conducting, the vapor in the bubble – invis-
cid, heat-conducting and subject to the Clapeyron
equation. Viscosity, thermal conductivity and surface ten-
sion coefficient are temperature-dependent, heat capacities
of the liquid and vapor are constant. At the bubble surface
the temperature of the vapor equals that of the liquid, and
the vapor pressure corresponds to the liquid temperature
on the saturation curve.

The above physical assumptions (with the exception of
temperature dependencies of viscosity and surface tension
coefficient) are conventional for the class of problems at
hand, however, their mathematical description can be real-
ized in different ways. Below is proposed the mathematical
model of the uniform-bubble based on the two following
supplementary assumptions. Firstly, pressure and tempera-
ture (and, consequently, density) of the vapor are taken to
be uniform through the volume of the bubble including
interface. Secondary, it is suggested that the vapor velocity
is negligible as compared to the liquid velocity at the inter-
face. Then conditions at the phase boundary may be repre-
sented in the form [8]:

pS � pV ¼ sS �
2r
R
� jU ð1Þ

qS � qVS ¼ jwþ j
q

2r
R
� dr

dt
þ 1

2
jU 2 ð2Þ

w ¼ iV � i�S ð3Þ

Hereafter the presence or absence of index ‘‘V” implies that
the given parameter refers to vapor or liquid, respectively,
the index ‘‘S” designates parameters at the bubble surface.
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In Eqs. (1)–(3), p is the pressure, s = srr is the friction
stress, r is the surface tension coefficient, R is the bubble
radius, j is the specific mass flow of vapor condensing at
the bubble surface, U is the liquid velocity at the bubble
boundary, qS is the specific heat flux from the bubble sur-
face to the liquid, qVS is the specific heat flux from the
vapor to the bubble surface, q is the density, i is enthalpy,
i�S is liquid enthalpy at vapor temperature and pressure at
the interface. From Eqs. (2) and (3) it follows that w con-
stitutes a heat of phase transition in the isobaric–isother-
mal conditions at a flat surface and at infinitely small
velocities of the liquid and vapor. From this point on we
will call this parameter as the thermodynamic heat of phase
transition.

Specific internal energies and specific enthalpies of the
liquid and vapor can be defined as follows:

e ¼ chþ e0; eV ¼ cVT V þ eV 0; i ¼ eþ p
q
;

iV ¼ eV þ
pV

qV

¼ cpT V þ eV 0 ð4Þ

Here h = T � T0, c is the specific heat of the liquid,, cV,cp

are specific heats of the vapor at constant volume and con-
stant pressure. Constants e0 and eV0 (note in the problem at
hand one of the two constants may be taken arbitrarily) are
linked between each other through the thermodynamic
heat of phase transition. Designating the latter at the initial
temperature T0 and vapor pressure pV0 as w0, one can de-
rive from Eqs. (3) and (4):

eV 0 ¼ e0 þ w0 � cpT 0 þ
pV 0

q
ð5Þ

w ¼ w0 þ hSðcp � cÞ � ðpV � pV 0Þ
q

ð6Þ

For the Newtonian incompressible liquid in the case of
spherical symmetry, the equation of motion, solution of
the continuity equation and kinematic condition at the
bubble surface may be written as follows:

q
ou
ot
þ u

ou
or

� �
¼ � op

or
þ os

or
þ 2

r
s� 2lu

r

� �
; s ¼ 2l

ou
or

ð7Þ

u ¼ 1

r2
UR2 ð8Þ

dR
dt
¼ U � j

q
ð9Þ

Here t, r – time and radial coordinate, u – velocity, l – dy-
namic viscosity, s = srr – friction stress. From Eq. (8) it fol-
lows that the product r2u is independent of radius.
Integrating Eq. (7) with respect to radius from r = R to
r =1 and taking into account Eqs. (1), (8), (9), we obtain
the following equation:

q R
dU
dt
þ 3

2
U 2

� �
¼ pV � p1 �

2r
R
� Xþ jU ;

X ¼ 12UR2

Z 1

R
lr�4dr ð10Þ
We will write the energy equation for the liquid surround-
ing the bubble:

qc
oh
ot
þ u

oh
or

� �
¼ 1

r2

o

or
r2k

oh
or

� �
þ U; U ¼ 12lU 2R4r�6

ð11Þ

Here, k is the thermal conductivity, U is the dissipative
function. We introduce a new coordinate, x = r � R(t), re-
lated to the moving boundary of the bubble. In the new
coordinate system Eq. (11), in terms of Eq. (8), will take
the form

qc
o

ot
ððRþ xÞ2hÞ

� �
x

þ qc
o

ox
UR2 � ðRþ xÞ2 dR

dt

� �
h

� �

¼ o

ox
ðRþ xÞ2k oh

ox

� �
þ 12lU 2R4

ðRþ xÞ4
ð12Þ

The initial and boundary conditions for Eq. (12) are as
follows:

hjt¼0 ¼ 0; hjx¼1 ¼ 0; hjx¼0 ¼ hSðtÞ ¼ T S � T 0 ð13Þ

Consider now processes within the bubble. In the general
case the Clapeyron, energy and continuity equations for
the inviscid ideal gas have the form

pV ¼ qVRVT V ð14Þ

qVcp
oT V

ot
þ wiriT V

� �
¼ opV

ot
þ wiripV �riqi

V ð15Þ

oqV

ot
þriðqVwiÞ ¼ 0 ð16Þ

Here RV is the vapor gas constant, wi; qi
V are components

of velocity and heat flux in the vapor. Using Eqs. (14),
(16) and introducing adiabatic exponent c = cp/cV, we
can transform Eq. (15) into the form

1

c� 1

opV

ot
þ cpriðqVwiT VÞ ¼ wiripV �riqi

V ð17Þ

Integrating Eq. (17) with respect to volume and using the
Gauss theorem, we will obtain:

1

c� 1

Z
V

opV

ot
dV þ cp

Z
S

qVwiT Vni dS

¼
Z

V
wiripVdV �

Z
S

qi
Vni dS ð18Þ

Here ni are components of the normal to the surface S lim-
iting the vapor volume V. For the spherically symmetric
problem Eq. (18) takes the form

1

c� 1

Z
V

opV

ot
dV þ cpqVSwST VSS

¼
Z

V
w

opV

or
dV � SqVS ð19Þ

HerewS, qVS, and TVS are the velocity, density and temper-
ature of the vapor at the bubble surface. From Eq. (16) it
follows that
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qVSwS ¼ qVS

dR
dt
þ j ð20Þ

Substituting Eq. (20) in Eq. (19) and making some trans-
formations, we will obtain the energy equation of the vapor
in the form

1

c� 1

Z
V

opV

ot
dV þ c

c� 1
pVS

dV
dt
þ cpJT VS

¼
Z

V
w

opV

or
dV � SqVS ð21Þ

Here, pVS is the vapor pressure at the bubble boundary,
J = jS. Allowing for that in the context of the model at
hand, pressure and temperature are uniform through the
bubble volume and using Eq. (2), we will present the inte-
gral energy equation for the vapor (21) in the form

1

c� 1

dðpVV Þ
dt

þ pV

dV
dt
¼ �SqS þ Jwþ J

q
2r
R
� S

dr
dt

þ 1

2
JU 2 � cpJT V; qS ¼ �k

oh
ox

����
x¼0

ð22Þ

Within the limits of taken assumptions, the equation of
mass balance for the vapor in the bubble may be written
as follows:

dmV

dt
¼ d

dt
ðqVV Þ ¼ �J ð23Þ

For closing of the problem, it is required to use the satura-
tion curve in some form, for example, in the form of the
modified Clausius–Clapeyron equation:

dT V

dt
qV

T V

w
RVT V

� 1

� �
¼ dqV

dt
ð24Þ

Eqs. (6), (9), (10), (12), (14), (22), (23), (24) form a closed
system of eight equations for eight main unknowns:
U,R,qV,TV,pV,h, w,j.

Denote kinetic and internal energy of the liquid by K

and E, vapor internal energy – by EV, the surface energy
– by Er, the work done by external pressure – by A:

K ¼ 2pqU 2R3; E ¼ 4p
Z 1

0

qeðRþ xÞ2dx;

EV ¼ mVeV; Er ¼ rS;
dA
dt
¼ �USp1 ð25Þ

Then, from equations constituting the above mathematical
model one can derive using identical mathematical trans-
formations, the following expression:

dK
dt
þ dE

9hdt
þ dEV

dt
þ dEr

dt
¼ dA

dt
� qUSe0 ð26Þ

For the problem at hand, Eq. (26) is an exact expression of
the energy conservation law without regard for the vapor
kinetic energy (in the above model proposed, the vapor
velocity is considered being negligible). Integrating Eq.
(26) in view of the initial conditions, after some transfor-
mations, another form of the energy conservation law
can be obtained:

F ¼ r0S0 þ
pV0V 0

c� 1
þ bmV0 þ p1V 0 ð27Þ

F ¼ K þ 4pqc
Z 1

0

hðRþ xÞ2dxþ rS þ pVV
c� 1

þ bmV þ p1V

ð28Þ

b ¼ w0 � cpT 0 þ
pV0 � p1

q

� �
ð29Þ

Here, mV0 is the initial vapor mass in the bubble. Note the
right-hand side of Eq. (27) is independent of time. This im-
plies the magnitude F is also independent of time, i.e. it is a
conservation integral in the context of the model of the
process at hand. For the further analysis it is convenient
to transform Eq. (27) as follows:

K þ BL þ BV ¼ DAþ DEr þ DEw ð30Þ
BL ¼ 4pqc

R1
0 hðRþ xÞ2dx; BV ¼ cVmVðT V � T 0Þ;

DA ¼ p1 V 0 � V � mV0�mV

q

� �
;

DEr ¼ r0S0 � rS; DEw ¼ ðmV 0 � mVÞðeV � eÞjT¼T 0

ð31Þ
2. Fundamental constituents of the computational algorithm

and results of calculations

For numerical realization of the above mathematical
model, the difference scheme, having, as a whole, the first
order of accuracy in time, was used. Since some different
equations contained more than one unknown, iterations
of the specific mass flux were conducted at each time step
to find a solution. An accuracy of the fulfillment of the dif-
ference analog of Eq. (22) served as a criterion for comple-
tion of iterations. The energy Eq. (12) for the liquid was
approximated by the implicit difference scheme and solved
by the marching method. In doing so, meshes nonuniform
in space with a crowding near bubble boundaries were
used.

With using preliminary methodical experiments, optimal
mesh parameters were found for each case. As the rate of
processes at hand increases essentially with time, a variable
step in time, changed in proportion to the current size of
the bubble, was used in calculations. Initial values of time
steps and minimum steps of spatial mesh were taken as fol-
lows: Dt = 10�7 s, Dx = R0/32000 at R0 = 10�3 m; Dt =
10�9 s, Dx = R0/16000 at R0 = 10�4 m; Dt = 10�11 s, D
x = R0/8000 at R0 = 10�5 m.

It is necessary to note the used computational algorithm
as a whole has no conservatism property, therefore, the dif-
ference analog of Eq. (30) was not exactly fulfilled in
numerical calculations. In the process of researches it has
been ascertained that a designed value of the residual of
the integral energy balance is an extra convenient tool for
control of miscalculations associated, e.g., with choosing
meshes in space and time. The results below were obtained



Fig. 2. Time variation of the radius of bubbles. curve 1: R0 = 10�3 m,
P1 = 105 Pa; curve 2: R0 = 10�4 m, P1 = 105 Pa; curve 3: R0 = 10�5 m,
P1 = 105 Pa; curve 4: R0 = 10�4 m, P1 = 2 � 104 Pa; curve 5: R0 =
10�4 m, P1 = 4 � 103 Pa.
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by calculations where the residual mentioned did not
exceed a few percent.

In the mathematical model used it is anticipated that the
vapor velocity is negligible when compared with the liquid
velocity. To check this assumption, the vapor velocity at
the interface was calculated by the formula

wS ¼
dR
dt
þ j

qV

ð32Þ

For the majority of calculations conducted the ratio wS/U
did not exceed 10%.

For the approval of the calculation technique were used
experiments [4]. In these experiments, the dynamics of the
vapor bubble in water was investigated into with an
increase in the external pressure from the initial value pV0

up to the atmospheric one pa. The dynamics of time varia-
tion of pressure in the course of experiments was recorded,
and the data were used in calculations. Results of the com-
parison are given in Fig. 1.

Now we will go to the results of numerical simulation
according to the above model. In all the calculations, evo-
lution of the vapor bubble in water was considered. Tem-
perature dependencies of thermal and physical properties
of water were interpolated by data [9]. In all the calcula-
tions the initial temperature was taken as 293 K, the initial
pressure in the bubble was equal to the saturation vapor
pressure at this temperature (2337 Pa). Pressure in the sur-
rounding liquid increased step-wise. In the calculations, the
bubble initial radius and pressure jump in the liquid were
varied. In all the cases the calculations were ceased in the
cases when the liquid velocity at the bubble boundary
had attained the sonic speed.

Shown in Fig. 2 is time variation of the radius of bub-
bles. The curves 1–3 correspond to different initial radii
of bubbles at an identical pressure jump in the liquid, the
curves 2, 4, 5 – to different pressure jumps at identical ini-
Fig. 1. Comparison of calculated results with experimental data (calcu-

lation–full lines, experiment-circles, t� ¼ t
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðpa�pV0Þ

q

q
Þ: for the cases: (a) –

R0 = 4.64 mm, pV0 = 58562 Pa, T0 = 85 �C; (b) –R0 = 8.89 mm,
pV0 = 15756 Pa, T0 = 55 �C.
tial radii. The bubble boundary velocity obtained in the
calculations was compared with a velocity calculated by
the Rayleigh formula [10]:

dR
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

p1 � pV 0

q
R0

R

� �3

� 1

 !vuut ð33Þ

The Rayleigh formula is an exact solution of the problem
in hand provided that the pressure in the bubble is constant
and the surface tension and viscosity of the liquid are not
taken into account. In the calculation to which curve 5 cor-
responds the distinction in velocities comprised about 20%,
in the rest of cases-essentially less (a few percent).

Shown in Fig. 3 is the temperature increment in the bub-
ble as a function of the compression ratio (R0/R) at differ-
ent initial conditions. As is seen, the greater is the initial
radius of the bubble and the higher is the pressure jump
in the liquid, the higher the temperature increment at the
same compression ratio. With the bubble compression
by a factor of about thirty the maximum temperature
Fig. 3. Temperature within the vapor bubble curve 1: R0 = 10�3 m,
P1 = 105 Pa; curve 2: R0 = 10�4 m, P1 = 105 Pa; curve 3: R0 =
10�5 m, P1 = 105 Pa; curve 4: R0 = 10�4 m, P1 = 2 � 104 Pa; curve
5: R0 = 10�4 m, P1 = 4 � 103 Pa.



Fig. 5. Constituents of the conservation integral (30) for the case
R0 = 10�4 m, P1= 2 � 104 Pa (curve 1 – DA, curve 2– DEw, curve 3 –
DEr, curve 4 – BL, curve 5 – K).
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increment in the calculations conducted made up approxi-
mately 50 K. It is interesting to compare this quantity with
the temperature increment at the adiabatic compression of
the bubble (i.e. with the complete absence of heat and mass
exchange between the vapor in the bubble and surrounding
liquid). It is easy to show that with the adiabatic compres-
sion of the bubble by a factor of thirty times and at the ini-
tial temperature of 290 K, temperature must rise
approximately up to 8500 K. Such a great (by two orders)
distinction in the temperature increment gives an indication
of the controlling role of heat and mass exchange processes
in the problem at hand.

Heat and mass exchange parameters (specific heat flux
qS and specific mass flux j) as a function of the compression
ratio are presented in Fig. 4. We point out that the form
and relative position of pertinent curves on both plots are
similar to each other, i.e. there is a correlation between heat
and mass fluxes.

The availability of this correlation can be seen from
analysis of obtained results in the view of the conservation
integral in the form of Eq. (30). The components in the left-
hand side of Eq. (30) constitute increments (relative to the
initial state) of different kinds of energy: kinetic energy of
the liquid K, internal energy of the liquid BL and internal
energy of the vapor remaining in the bubble BV. Accord-
ingly, the components in the right-hand side of Eq. (31)
constitute sources of these increments: the work done by
the external pressure DA, released surface energy DEr

and latent condensation energy DEw. Values of these quan-
tities (except for BV that is much less than the rest) for one
of the calculations are shown in Fig. 5. It is seen the main
source of a liquid warm-up is the condensation energy
whereas the work done by the external pressure goes
almost entirely to increase the liquid kinetic energy. Note
as well, the released condensation energy exceeds percepti-
bly the work done on the system.

Results presented reveal the condensation is one of the
determining processes for the problem at hand. To reveal
more fully effects associated with the condensation, calcula-
Fig. 4. Specific heat flux from the interface to the liquid and specific mass
R0 = 10�4 m, P1 = 105 Pa; curve 3: R0 = 10�5 m, P1 = 105 Pa; curve 4: R
tions where the phase transition was artificially blocked up
have been performed. For this purpose it was believed in all
equations that j = 0, the saturation curve equation was
excluded from the mathematical model. This problem is
completely equivalent to that of the gas bubble compres-
sion in the absence of dissolution, i.e. at a constant gas
mass in the bubble, provided that gas properties are coin-
cident with the vapor ones. And so, for convenience sake,
from here on the vapor in the problem with the ‘‘blocked
up” phase transition will be called gas.

One of radical distinctions in evolution of vapor and gas
bubbles at an increase of the external pressure consists in
that the vapor bubble can monotonically contract up to a
full disappearance (collapse regime), whereas in the case
of the gas bubble, the initial compression necessarily
changes to expansion, once a certain minimum size has
been achieved.

For conditions in which the comparison of evolutions of
the vapor and gas bubbles was carried out (R0 = 10�4 m,
P1 = 2 � 104 Pa), this minimum radius of the gas bubble
corresponds to the compression ratio R0/R � 19 (Figs. 6,
flux of condensing vapor. curve 1: R0 = 10�3 m, P1 = 105 Pa; curve 2:

0 = 10�4 m, P1 = 2 � 104 Pa; curve 5: R0 = 10�4 m, P1 = 4 � 103 Pa.



Fig. 6. Variation in the radius of the vapor (1) and gas (2) bubbles.

Fig. 9. Variation in the heat flux for the vapor (1) and gas (2) bubbles.

Fig. 8. Variation in temperature for the vapor (1) and gas (2) bubbles.
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and 7). Since in this paper the expansion regime is no sub-
ject of investigation, the comparative analysis of character-
istics of vapor and gas bubbles will be limited by the
compression ratio mentioned. Note the vapor bubble com-
pression rate grows steadily with a decrease in the vapor
radius (Fig. 7). This demonstrates a greater probability of
realization of the vapor bubble collapse regime in the con-
ditions at hand.

Shown in Figs. 8, and 9 are temperature increments and
heat fluxes to the liquid for the vapor and gas bubbles. At
the initial stage of the process, temperature in the vapor
bubble is somewhat higher than in the gas bubble. How-
ever, at a later time at the identical compression ratio,
the temperature increment and heat flux to the liquid are
much higher in the case of the gas bubble. The same applies
to a growth of the pressure and density – at the maximum
compression ratio the pressure and density in the gas bub-
ble exceed approximately the initial values by 9000 and
7000 times, whereas for the vapor bubble the excess com-
prises about 50%. When analyzing results presented it is
necessary to consider that the identical compression ratio
of bubbles is appropriate to different instants of time.

Given in Fig. 10 are values of different components in
the conservation integral (30) for the gas bubble. As differ-
Fig. 10. Constituents of the conservation integral (30) for the gas bubble
(R0 = 10�4 m, P1 = 2 � 104 Pa). 1 – DA, 2 – DEr, 3 – BL, 4 – BV, 5 – K.

Fig. 7. Liquid velocity at the bubble boundary: 1 – vapor bubble, 2 – gas
bubble.
entiated from the case of the vapor bubble, at the compres-
sion ratio appropriate for the minimum radius, kinetic
energy of the liquid turns to zero, going to thermal energy
of liquid and gas. In doing so, like for the vapor bubble, the
thermal energy increment of the liquid exceeds essentially
that of the vapor. And so, the work done by external
forces at the maximum compression ratio is equal, for all



Fig. 11. Temperature profiles in the liquid for the vapor (1) and gas (2) bubbles (a – R0/R = 2, b – R0/R = 4, c – R0/R = 8).
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practical purposes, to the thermal energy increment of the
liquid. Note that in spite of an addition due to kinetic
energy, the quantity of the thermal energy increment of
the liquid for gas is perceptibly less than for vapor, though
the liquid surface temperature in the case of gas is much
higher. This is because the liquid around the gas bubble
is warmed-up through the lesser depth than around the
vapor bubble (Fig. 11). This effect is likely to result from
a different role of convective heat transfer in the liquid,
as the liquid velocity in the case of the vapor bubble is
much higher (Fig. 7).
2. Conclusions

The mathematical model for the uniform vapor bubble,
based on assumptions of the uniformity of pressure and
temperature through the bubble volume and of a negligible
vapor velocity at the bubble surface (when compared to the
liquid velocity), has been proposed. As opposed to other
models, in the model proposed, the temperature depen-
dence of thermal and physical properties (exclusive of spe-
cific heats of liquid and vapor) is taken into account, as
well as effects caused by phase transitions are more fully
allowed for. The temperature field around the bubble is
derived from the energy equation for the liquid. The model
ensures the exact fulfillment of the integral law of conserva-
tion of total energy including kinetic and internal energies
of the liquid, internal energy of the vapor and surface
energy. In the context of the model proposed the conserva-
tion integral for the case of stepwise change of pressure in
the liquid has been found.

On a basis of numerical realization of the proposed
model, theoretical research of processes taking place in
the vapor bubble and surrounding liquid (water) with a
stepwise increase in pressure at an infinite distance from
the bubble has been carried out. It has been obtained, the
vapor in the bubble contracts essentially less than the bub-
ble itself due to the condensation at the interface. The work
done thereat on the system by the external pressure changes
practically fully to kinetic energy of the liquid, and the
liquid velocity is well described by the Rayleigh formula
conjecturing that the pressure in the bubble is constant.
The thermal energy increment of the liquid exceeds
vastly that of the vapor which points up to an intense
heat removal to the liquid. The increment of the liquid
internal energy occurs, for the most part, due to an energy
released through the vapor condensation at the bubble
boundary.

The effect of condensation on processes was studied
through artificial ‘‘blocking up” of the phase transition.
The problem in the present formulation is equivalent to
the case of the bubble filled in by insoluble gas whose prop-
erties are coincident with those of water vapor. It has been
obtained in the absence of the condensation, at an instant
of time of changing from compression of the bubble to its
expansion, a temperature increment within the bubble
exceeds that with the available condensation at the same
compression ratio by more than an order. For this instant
of time, the work done on the system by the external pres-
sure coincides practically with the liquid internal energy
increment. It has been established that at the identical com-
pression ratio, the liquid around the bubble has been
warmed-up to a greater depth with the available condensa-
tion that in the absence thereof.
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